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Abstract 
 

In the applications of video monitoring over large 
public or private spaces, multiple cameras are required to 
cover the entire space and resolve the problems of 
occlusion, object intersection and so on. In this work, a 
novel multi-view pedestrian tracking framework is 
proposed to simultaneously detect and associate human 
objects across views using graph matching techniques to 
fully exploit the object features and the spatial/temporal 
relationships among the objects. Experimental results are 
provided to demonstrate the accuracy of our proposed 
framework. 
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1. Introduction 
Multi-view pedestrian tracking is a very popular and 

useful computer vision research topic with a broad impact 
on applications such as intelligent surveillance, human 
machine interaction, etc. There are several technical 
challenges, including the occlusion, trajectory intersection, 
the detection failures due to illumination change or object 
size, the cross-camera correspondence creation (especially 
without prior camera or scene knowledge). To address 
these topics, there have been a large number of tracking 
algorithms proposed in the past two decades to tackle 
such challenges from both detection and tracking aspects.  

From the detection perspective, numerous approaches 
have been proposed and can be categorized as follows: 

Category 1: Holistic Detection. Detectors are trained 
based on global features such as edge template [1] or local 
features such as histogram of oriented gradients (HOG) 
[2]. Whenever the features in local search window meet 
certain criteria, the detector will catch it and categorize 
this search window as a detected human. For instance, in 
OpenCV [3] package, a pre-trained HOG-based linear 

support vector machine (SVM) [4] is used for detection. 
However, such algorithms are sensitive to occlusions. 

Category 2: Part-based Detection. Human objects can 
be modeled as a collection of parts (as in [5]). Edge and 
orientation features can be derived over each part. The 
joint hypotheses from the parts are used to classify the 
assembled object block.  The algorithms in this category 
often have better resistance to occlusions. However, the 
part processing and detection can be very complex (e.g., 
computing features per scale, performing classification 
per possible location and post-processing, such as non-
maximal suppression, etc.). 

Category 3: Motion-based Detection. In such kind of 
algorithms, the moving pedestrians are usually modeled 
as foreground while the static regions are classified as 
background, through background-subtraction algorithms 
(e.g., [6]). However, the algorithms from this category are 
intrinsically sensitive to the illumination change and 
background noise. 

Category 4: Deep learning-based Detection. In the past 
a few years, advanced deep learning techniques are 
widely used in object recognition areas. Basically, a large 
image dataset is prepared beforehand and used for 
training the classifier(s) from pixel domain. The resultant 
classifier is able to derive the bounding area of the target 
object and decide the class of this object (e.g., car, human, 
etc.) For example, Region-based Convolutional Neural 
Network (RCNN) proposed in [7] can mostly detect 
objects from an input image and classify them into the 
corresponding categories with very high accuracy.  

From the tracking point of view, some classical 
approaches such as Meanshift [8], Kalman Filtering [9] 
perform well for single-view tracking but may fail in 
complex scenarios with frequent object disappearances 
and occlusions. For a long-term tracking, the most typical 
framework is tracking-by-detection. In such scheme, a 
human detector is firstly utilized to localize the object in 
each frame. Then a tracker algorithm is used to find 
correspondence among objects and associate the objects 
across frames (e.g., [10] [11]). For the multi-camera 



pedestrian tracking, two major schemes are proposed and 
referred as “fusion-first” and “tracking-first”. In “fusion-
first” framework (such as [12]), the detected objects are 
projected to a common view and associated. Then the 
tracking is triggered over each view, whereas in 
“tracking-first” framework, tracking is completed either 
independently over each view or collaboratively across 
views, then the estimated tracks from each view can be 
combined and associated (such as [13]). To associate the 
objects across views, different approaches are proposed. 
Some solutions are purely based on image features (e.g., 
color histograms, HOG, etc). For instance, in [14], Kang 
et al. formulate the tracking as a problem of maximum 
joint probability model based purely on color. It uses the 
probabilistic data filtering and multi-camera homography 
to track pedestrians across cameras. In [15], Fleuret et al. 
proposes to predict people occlusions using a generative 
model and corresponding probabilistic occupancy map, 
and demonstrates successful tracking of up to 6 people. In 
[16], Berclaz et al. proposes a k-shortest paths (KSP) 
algorithm and formulates the trajectory linking and data 
association as a global network flow convex optimization 
problem and significantly reduces the tracking complexity. 

Different from the traditional people re-identification 
problem, for cross-view pedestrian tracking, relationships 
among objects are consistent over 3D world coordinate 
and serve as strong constraints for object association. In 
recent years, several graph-based solutions have been 
proposed to associate objects not only based on object 
features but also relationships. In [17], tracking graph is 
firstly created over each view and later a separate cross-
view graph is created to impose the spatial constraints for 
the corresponding view pair. Li et al. improve upon [17] 
and propose to introduce “virtual nodes” in [18] from 
each view onto another to ensure the amount of detections 
in each view pair are the same. Further, the graph weights 
are refined using world coordinate distances. However, in 
this work, only graph node similarity is considered 
without fully exploiting the edge similarity. Nie, et al. 
propose a unified graph matching framework [19] for 
single and cross camera pedestrian tracking. In this work, 
graph matching is applied to associate object “tracklets” 
using both person-wise and part-wise features. The two 
graphs before and after occlusion and scene transition are 
matched to link “tracklets”. 

Inspired by the previous works, in this paper, we 
propose to combine the state-of-art deep convolutional 
neural network (CNN) based object detection and graph 
matching (GM) based object association within the same 
framework. Each camera is used as a smart sensor and 
processor to identify and track pedestrians. The post-
processed data (e.g., trajectory, object descriptors, etc.) 
after compression are up-streamed to an edge server for 
data synthesis and final cross-view object association. 

During the graph derivation, we fully exploit the object-
level features and spatial/temporal features as node and 
edge attributes in the graph. The experimental results 
demonstrate that the proposed framework can outperform 
recent work in terms of tracking accuracy and precision.  

The rest of this paper is structured as follows. Section 
2 provides a brief background review of graph matching 
algorithm, a key component of our system. Section 3 
details our system design, including pedestrian detection, 
single-view pedestrian tracking and cross-view pedestrian 
association. Section 4 presents the experimental results. 
This paper concludes in Section 5 with tentative future 
work summarized. 

2. Background Review of Graph Matching 
In this work, the state-of-art factorized graph matching 

(FGM) [20] algorithm is used for both the single-view 
pedestrian tracking and the cross-view object association, 
as detailed in Section 3.  

Similar to conventional graph matching (GM), given 
two graph structures and the associated affinity matrices, 
the problem of FGM also aims at deciding the optimal 
correspondence X  between nodes, to ultimately maximize 
the global sum of the node and edge compatibilities, as 
shown in (1), where ܲܭ൫݊௜, ௝݊൯	 denotes the similarity 
between node ݅	from graph ܣ	and node ݆	from graph ܤ , 
,ሺ݁௜௞ܳܭ ௝݁௟ሻ  measures the similarity between edge ݁௜௞ 
linking node ݅ and ݇ in graph ܣ	and edge ௝݁௟ linking node 
݆ and ݈ in graph ܤ. 

JሺXሻൌ∑ ,൫݊௜ܲܭ௜,௝ݔ ௝݊൯௜,௝ ൅ ∑ ௜௝௘೔ೖ∈ாభ,௘ೕ೗∈ாమݔ ,ሺ݁௜௞ܳܭ௞௟ݔ ௝݁௟ሻ     (1) 

In FGM, the pair-wise affinity matrix K  is factorized, 
to provide light-weight and unified representation of 
conventional GM methods, as shown in (2), where ܲܭ 
and ܳܭ  are node and edge affinity matrices, ܩଵ  and ܪଵ 
represent the incidence matrices of graph ܣ and ܩଶ  and 
 ,Namely .ܤ ଶ represent the incidence matrices of graphܪ
the non-zero elements in each column of ܩଵ/ܩଶ  and 
ଶܪ/ଵܪ  indicate the starting and ending nodes in the 
corresponding directed edges, respectively. 

K	ൌ݀݅ܽ݃൫ܿ݁ݒሺܲܭሻ൯ ൅ ሺܩଶ ൈ ଶܪሻ൯ሺܳܭሺܿ݁ݒଵሻ݀݅ܽ݃൫ܩ ൈ  ଵሻ் (2)ܪ

FGM has the following advantages, compared with 
previous GM algorithms: 

Firstly, FGM operates over smaller matrices. Therefore, 
the computational cost is significantly reduced. 

Secondly, FGM internally introduces a path-following 
algorithm and convex relaxation to better approximate the 
GM problem solution. 

Experimental results have demonstrated that FGM 
outperforms the previous GM frameworks with proven 
performance margin and is therefore chosen as the object 
association tool for our pedestrian association task. 

 



3. System Overview 
Our proposed multiview tracking framework consisits 

of three key components: Pedestrian Detection (in Section 
3.A), Single-view Tracking (in Section 3.B) and Cross-
view Tracking (in Section 3.C). 

A.  Pedestrian Detection 
Our pedestrian detection is based on RCNN detector 

[7] as introduced in Section 1. Among 20 pre-defined 
training categories, we only enable the “person” category 
(with a confidence threshold=80%) and use this classifier 
to detect pedestrian objects and corresponding bounding 
boxes.  The RCNN detector is very robust to illumination 
change and the output at the fully-connected layer can be 
used as feature vectors (totally 4096 entries) for the 
following pedestrian tracking and cross-view object 
association tasks.  

 
Figure 1.  Single-View Pedestrian Tracking Algorithm 

Red Arrow: VOB match found and object unified. Green Arrow: New 
VOB entry to create. Pedestrian faces are masked to protect privacy. 

B.  Single-View Object Tracking 
Our single-view pedestrian tracking framework is 

illustrated in Figure 1. In this framework, a virtual object 
buffer (VOB), namely a dynamic pedestrian lookup table, 
is used to document the historical information of each 
detected object, such as CNN features, bounding box, 
detected frame indices, motion vector, object label, last 
detected frame index, occurrence (i.e., number of total 
detections), etc. Each new pedestrian object from the 
incoming frame will be compared against each VOB 
candidate using the RCNN features and be associated 
with the one which satisfies the following two criteria: 

Criterion 1: The bounding box intersection-over-union 
(IOU) ratio between the incoming pedestrian object and 
the motion-compensated VOB object is greater than a pre-
defined threshold (i.e., 0.3). Please note that the motion-
compensated object is the previous detected VOB object 

translated by (݉ݒ ∙ ∆݂), where ݉ݒ is the most recent 

VOB object motion vector and ∆݂  is the time distance 
between the current frame and the most recent frame the 
target VOB candidate appeared. 

Criterion 2: The RCNN feature Euclidean distance 
between the current object and the VOB candidate is 
minimal among all VOB candidates and at the same time 
this VOB object has not been associated with any other 
incoming frame object previously. 

If a match is found, then the incoming frame object is 
associated with the corresponding VOB object and this 
object entry is updated (e.g. occurrence, motion vector, 
trajectory, etc.). Otherwise, the incoming object is defined 
as a new object and a new entry will be created and 
inserted into the VOB. 

This framework can tackle the infrequent RCNN 
detection failure (i.e., object is missing temporarily and 
later re-appears within a small number of frames, e.g., 
1~2 frames), as shown in Figure 2 (top). 

 
Figure 2.  Single-View Tracking Mis-detection Handling strategies 

Top: RCNN mis-detection (1~2 frames) solved by VOB lookup. Mid: 
Short-term mis-detection (<10 frames) solved by single-view graph 
matching between last detected object frame and first re-detected object 
frame. Bottom: Long-term mis-detection (>10 frames) handling using 
new label assignment. 

On the other hand, the mis-detections caused by 
trajectory intersection or occlusion can be either short-
term or long-term. If the occlusion lasts only a few frames 
(e.g., within 5 frames), after reappearance, the object still 
resembles the corresponding one from the last detected 
frame and the relationships to other objects remain. 
However, if the occlusion or intersection lasts longer (e.g., 
above 20 frames), we cannot confidently predict its 
location. In this work, we provide two different strategies 
to address the long-term and the short-term intersection 
and occlusion.  

For the long-term “tracklets”, whose frame-stamps are 
non-overlapping and the frame difference between the last 
detection and first re-detection is above 10 frames, we 
simply assign a new object label, as shown in Figure 2 



(bottom). Later, we will refine the labels through cross-
view tracking, as described in Section 3.C. 

Over the short-term “tracklets”, whose frame-stamps 
are non-overlapping and the frame distance between the 
last detection and the first re-detection is within 10 
frames, we apply the FGM [20] algorithm (introduced in 
Section 2) to associate, as shown in Figure 2 (middle). In 
our single-view object association across frames, each 
detected pedestrian object is defined as a node in the 
graph, as illustrated in Figure 3. The relationship between 
two objects in the frame is defined as an edge in the 
graph. For object tracklets with non-overlapping frame-
stamps (e.g., one tracklet ending in frame 11 and the other 
tracklet starting in frame 17), we trigger the graph 
matching over the two most adjacent frames (i.e., frame 
11 and frame 17). For the associated objects, we further 
compare the spatial offset (i.e., displacement between 
associated objects bounding box centers) of the two 
associated objects against a threshold, i.e., s_factor ∙ ݒ݉ ∙
∆݂, where ݉ݒ is the motion vector of the ending frame 
object in the anchor object trajectory and ∆݂ is the frame 
distance between the ending frame-stamp in the anchor 
tracklet and the starting frame-stamp of the other tracklet. 
s_factor is a scaling controller. A larger s_factor makes it 
more likely to link “broken” tracklets but simultaneously 
increases the risk of false-linking. In our configuration, 
s_factor=5. If two objects satisfy the spatial validation, 
we will link the corresponding tracklets and unify their 
labels. Otherwise, the two objects are assigned with 
different labels. 

 

 
Figure 3.  Single-View Graph Matching between frames 

Solid black lines indicate the edge simlarity in a frame; Green lines 
indicate the associated objects through graph matching. 

Under our configuration, the RCNN features are used 
as node attributes and the spatial relationships are used as 
edge attributes. The node similarity is defined in (3), 
where ܰܰܥሬሬሬሬሬሬሬሬሬԦ௧

௜  and ܰܰܥሬሬሬሬሬሬሬሬሬԦ
௧ା∆௧
௝  denote the RCNN feature 

vector for node ݅  and node ݆  at time ݐ  and ݐ ൅ ݐ∆ . The 
edge similarity is defined in (4), where ݀ప௞ሬሬሬሬሬԦሺݐሻ ൌ పܺሬሬሬԦሺݐሻ െ
ܺ௞ሬሬሬሬԦሺݐሻ	is the displacement vector between node ݅	position 

and node ݇ position, at timestamp ݐ	and ݀ప௟ሬሬሬሬԦሺݐ ൅  ሻ is theݐ∆
displacement vector between node ݆ position and node ݈ 
position at timestamp	ݐ ൅  ”ݐݏ݅݀“ ,In both (3) and (4) .ݐ∆
denotes the L-2 distance between two vectors. 

,൫݊௜ܲܭ  ௝݊൯ ൌ ሬሬሬሬሬሬሬሬሬԦ௧ܰܰܥ൫ݐݏሺെ݀݅݌ݔ݁
௜, ሬሬሬሬሬሬሬሬሬԦܰܰܥ

௧ା∆௧
௝ ൯ሻ  (3) 

,൫݁௜௞ܳܭ           ௝݁௟൯ ൌ ݐݏሺെ݀݅݌ݔ݁ ቀ݀ప௞ሬሬሬሬሬԦሺݐሻ, ఫ݀௟
ሬሬሬሬԦሺݐ ൅  (4)								ሻቁሻݐ∆

C. Cross-View Object Tracking 

The cross-view object tracking consists of three major 
steps: homography projection, graph matching, and label 
unification.  

Step 1: Homography Projection. The goal of this step is 
to project objects standing on the same ground plane from 
different views onto a reference common plane to impose 
spatial constraints. In our implementation, we select the 
view with the largest visible area as the reference view 
and derive the homography matrix based on the pre-
selected corresponding feature points on the ground 
between the reference and non-reference views. Without 
precise calibration parameters, the estimated homography 
parameters already provide relatively accurate projections 
for ground points (e.g., the points close to the feet are 
projected accurately after homography projection), as 
illustrated in Figure 4, where the original ground positions 
are transformed according to the derived homography 
matrix before further applying graph matching. 

 

 
Figure 4.  Cross-View Homography Mapping and GM Illustration 

Top: two frames captured at the same time but from different cameras. 
The left view is used as reference view. Bottom left and right: original 
spatial locations in left and right views. Bottom middle: homography 
projected spatial locations from top right view to top left view. Dashed 
lines denote spatial homography transformation. Bi-directional headed 
arrow denote associated objects through cross-view graph matching. 

Step 2: Cross-view Graph matching (CV-GM) between 
non-reference view and reference view. Similar to single-
view object association between frames, we also apply the 
graph matching algorithm [20] to associate objects across 
views, using object-level features and inter-object 
relationships, as illustrated in Figure 4. For each view, 
each node represents a tracklet. The node attributes are 
RCNN features from the frames that the object is detected 
and the object trajectories. The node similarity between 
object ݅  in one view and object 	݆	 in another view is 

Graph 
Matching 

Frame 10 Frame 15

Homography 
Projection 



,൫݊௜ܲܭ ௝݊൯ ൌ ܰܥሺܲܭ ௜ܰ௝ሻ ∙ ൫ܲܭ ௜ܵ௝൯ , where ܲܭሺܰܥ ௜ܰ௝ሻ 
denotes the tracklet CNN feature similarity and ܲܭሺ ௜ܵ௝ሻ 
represents the object trajectory similarity, as defined in (5) 
and (6). Here ௜ܱ  and ௝ܱ  represent the set of detection 
frame-stamps for object ݅  and ݆ . In (6), ൫ݔ௧

௜, ௧ݕ
௜൯ denotes 

the 2D coordinates of the bounding box lower boundary 
middle point at time ݐ for object	݅. ௧ܰ 	is the co-detected 
object number. The ܶሺ. ሻ  represents the homography 
transform from object ݆ view to object ݅ view. In both (5) 
and (6), distance is measured using Euclidean norm. 

ܰܥ൫ܲܭ		 ௜ܰ௝൯ ൌ ሺെ݌ݔ݁	
ଵ

ே೟
∑ ሬሬሬሬሬሬሬሬሬԦ௧ܰܰܥሺݐݏ݅݀

௜, ሬሬሬሬሬሬሬሬሬԦܰܰܥ
௧
௝ሻሻ௧∈ሺை೔∩ைೕሻ  (5) 

൫ܲܭ ௜ܵ௝൯ ൌ ሺെ݌ݔ݁	
ଵ

ே೟
∑ ௧ݔሺݐݏ݅݀

௜, ܶሺݔ௧
௝ሻሻ௧∈ሺை೔∩ைೕሻ  (6) 

The edge similarity, ܳܭ൫݁ప௞ሬሬሬሬሬԦ, ఫ݁௟ሬሬሬሬԦ൯, is used to measure 
the object location and trajectory similarity between node 
݅ and node ݇ in view 1 and that between node ݆ and node ݈ 
in view 2, as defined in (7), where ݂ܿ݀ is the co-detected 
frame set between two views, ݐ is the frame index, ݀ప௞ሬሬሬሬሬԦሺݐሻ 
and ఫ݀௟

ሬሬሬሬԦሺݐሻ are defined similarly as (4) but extended to 3-
dimensional vector by concatenating all temporally-
detected samples. 

,൫݁ప௞ሬሬሬሬሬԦܳܭ ఫ݁௟ሬሬሬሬԦ൯ ൌ ሺെ݌ݔ݁
ଵ

ே೟
∑ ,ሻݐሺ݀ప௞ሬሬሬሬሬԦሺݐݏ݅݀ ఫ݀௟

ሬሬሬሬԦሺݐሻሻሻ௧∈௖ௗ௙  (7) 

For simplicity, the graph matching is triggered when a 
new object appears in one view (either entering the scene 
or being re-detected). After association, we re-calculate 
the matching distance ܦ௧	(i.e., sum of the node and edge 
distance against the associated nodes and edges in other 
views) for the new object and compare with the minimum 
distance (ܦ௠௜௡ ) from the previously-associated objects. 
If ௧ܦ	 ൑ ߩ ∙ ௠௜௡ܦ , we assume the association is correct. 
Otherwise, we assume that the association is incorrect and 
assign a different label. Here ߩ is a confidence parameter. 
A larger ߩ will associate objects more easily but increases 
the risk of cross-view mismatch. In our setting, 10 = ߩ. 

 
Figure 5.  Cross-View Graph Matching Illustration 

Top: Tracklet 1 captured from View 1; Mid: Two tracklets (2 and 3) 
captured from View 2. Bottom: After cross-view graph matching, tracket 
2 and 3 are both matched with tracklet 1 for the overlapping frames and 
therefore the labels of tracklet 1, 2 and 3 are unified (eventually all 
marked in green). 

Step 3: Label Unification. According to the cross-view 
graph matching results, we unify the labels, as illustrated 
in Figure 5. The object with shorter tracklet in one view 
will carry over the label from the associated object with 

longer tracklet in the other views, as long as it does not 
overlap with any previously-associated tracklet(s) in the 
same view. Automatically, the falsely-labeled tracklets in 
the single-view tracking are recognized and re-labeled. 

4. Experimental Results 
We evaluate our proposed tracking framework on the 

public PETS benchmark dataset [21]. The scenes in this 
cross-view dataset are very challenging with multiple 
pedestrians constantly interacting with each other and 
different kinds of occlusions. We simulate the multi-view 
tracking among View 1, 5 and 7 for 200 frames, using 
View 1 as the reference view. Objects from View 5 and 
View 7 are projected onto View 1 and associated and then 
the labels are unified across views. 

We report our tracking results using the MOT metrics 
[22], i.e., multiple object tracking precision (MOTP) and 
multiple object tracking accuracy (MOTA), summarized 
in Table I. Previous works using the same dataset ([18], 
[23]) are provided for comparison. 

TABLE I  CROSS-VIEW TRACKING RESULTS OVER PETS DATASET 
Method [23] 

 (3-view) 
[23]  

(2-view) 
[18]  

(2-view) 
Proposed  
(3-view) 

MOTP 53.4% 60.0 79.9% 83.6% 
MOTA 74.1% 76.0 93.2% 94.8% 

The experimental results demonstrate that the RCNN 
detector can mostly detect the pedestrian objects but may 
occasionally fail on partially-occluded or small objects. 
The RCNN features do not suffice to associate objects 
across views. However, after combining the spatial and 
temporal constraints (e.g., locations, trajectories, etc.), the 
cross-view object association is significantly improved. 
Compared with [18] and [23], the MOTP and MOTA are 
both improved. A sample output from our tracking system 
is provided in Figure 6. 

5. CONCLUSIONS 
In this paper, we propose a novel multi-view pedestrian 

detection and tracking framework based on smart camera 
network for surveillance applications. We use the RCNN 
detector to identify pedestrians in each view and track the 
detected objects by matching the CNN features. Then we 
formulate and solve the cross-view object association as a 
graph matching problem using the object trajectories. The 
experimental results demonstrate the improvement over 
previous works. Future studies include (1) the training of 
a CNN classifier specifically for pedestrian detection and 
(2) incorporation with additional visual features for more 
accurate cross-view object association. 
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Figure 6.  Proposed Multiview Pedestrian Tracking System Output Visualization
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