

A Multi-View Pedestrian Tracking Framework
Based on Graph Matching

Fanyi Duanmu1, Xin Feng2, Xiaoqing Zhu3, Wai-tian Tan3, and Yao Wang1

1New York University, 2Chongqing University of Technology, 3Cisco Systems Inc.
{fanyi.duanmu, yw523}@nyu.edu; xfeng@cqut.edu.cn; {xiaoqzhu,dtan2}@cisco.com.

Abstract

In the applications of video monitoring over large
public or private spaces, multiple cameras are required to
cover the entire space and resolve the problems of
occlusion, object intersection and so on. In this work, a
novel multi-view pedestrian tracking framework is
proposed to simultaneously detect and associate human
objects across views using graph matching techniques to
fully exploit the object features and the spatial/temporal
relationships among the objects. Experimental results are
provided to demonstrate the accuracy of our proposed
framework.

Keywords: Pedestrian Detection, Graph Matching,
Multi-view Tracking, Object Association

1. Introduction
Multi-view pedestrian tracking is a very popular and

useful computer vision research topic with a broad impact
on applications such as intelligent surveillance, human
machine interaction, etc. There are several technical
challenges, including the occlusion, trajectory intersection,
the detection failures due to illumination change or object
size, the cross-camera correspondence creation (especially
without prior camera or scene knowledge). To address
these topics, there have been a large number of tracking
algorithms proposed in the past two decades to tackle
such challenges from both detection and tracking aspects.

From the detection perspective, numerous approaches
have been proposed and can be categorized as follows:

Category 1: Holistic Detection. Detectors are trained
based on global features such as edge template [1] or local
features such as histogram of oriented gradients (HOG)
[2]. Whenever the features in local search window meet
certain criteria, the detector will catch it and categorize
this search window as a detected human. For instance, in
OpenCV [3] package, a pre-trained HOG-based linear

support vector machine (SVM) [4] is used for detection.
However, such algorithms are sensitive to occlusions.

Category 2: Part-based Detection. Human objects can
be modeled as a collection of parts (as in [5]). Edge and
orientation features can be derived over each part. The
joint hypotheses from the parts are used to classify the
assembled object block. The algorithms in this category
often have better resistance to occlusions. However, the
part processing and detection can be very complex (e.g.,
computing features per scale, performing classification
per possible location and post-processing, such as non-
maximal suppression, etc.).

Category 3: Motion-based Detection. In such kind of
algorithms, the moving pedestrians are usually modeled
as foreground while the static regions are classified as
background, through background-subtraction algorithms
(e.g., [6]). However, the algorithms from this category are
intrinsically sensitive to the illumination change and
background noise.

Category 4: Deep learning-based Detection. In the past
a few years, advanced deep learning techniques are
widely used in object recognition areas. Basically, a large
image dataset is prepared beforehand and used for
training the classifier(s) from pixel domain. The resultant
classifier is able to derive the bounding area of the target
object and decide the class of this object (e.g., car, human,
etc.) For example, Region-based Convolutional Neural
Network (RCNN) proposed in [7] can mostly detect
objects from an input image and classify them into the
corresponding categories with very high accuracy.

From the tracking point of view, some classical
approaches such as Meanshift [8], Kalman Filtering [9]
perform well for single-view tracking but may fail in
complex scenarios with frequent object disappearances
and occlusions. For a long-term tracking, the most typical
framework is tracking-by-detection. In such scheme, a
human detector is firstly utilized to localize the object in
each frame. Then a tracker algorithm is used to find
correspondence among objects and associate the objects
across frames (e.g., [10] [11]). For the multi-camera

pedestrian tracking, two major schemes are proposed and
referred as “fusion-first” and “tracking-first”. In “fusion-
first” framework (such as [12]), the detected objects are
projected to a common view and associated. Then the
tracking is triggered over each view, whereas in
“tracking-first” framework, tracking is completed either
independently over each view or collaboratively across
views, then the estimated tracks from each view can be
combined and associated (such as [13]). To associate the
objects across views, different approaches are proposed.
Some solutions are purely based on image features (e.g.,
color histograms, HOG, etc). For instance, in [14], Kang
et al. formulate the tracking as a problem of maximum
joint probability model based purely on color. It uses the
probabilistic data filtering and multi-camera homography
to track pedestrians across cameras. In [15], Fleuret et al.
proposes to predict people occlusions using a generative
model and corresponding probabilistic occupancy map,
and demonstrates successful tracking of up to 6 people. In
[16], Berclaz et al. proposes a k-shortest paths (KSP)
algorithm and formulates the trajectory linking and data
association as a global network flow convex optimization
problem and significantly reduces the tracking complexity.

Different from the traditional people re-identification
problem, for cross-view pedestrian tracking, relationships
among objects are consistent over 3D world coordinate
and serve as strong constraints for object association. In
recent years, several graph-based solutions have been
proposed to associate objects not only based on object
features but also relationships. In [17], tracking graph is
firstly created over each view and later a separate cross-
view graph is created to impose the spatial constraints for
the corresponding view pair. Li et al. improve upon [17]
and propose to introduce “virtual nodes” in [18] from
each view onto another to ensure the amount of detections
in each view pair are the same. Further, the graph weights
are refined using world coordinate distances. However, in
this work, only graph node similarity is considered
without fully exploiting the edge similarity. Nie, et al.
propose a unified graph matching framework [19] for
single and cross camera pedestrian tracking. In this work,
graph matching is applied to associate object “tracklets”
using both person-wise and part-wise features. The two
graphs before and after occlusion and scene transition are
matched to link “tracklets”.

Inspired by the previous works, in this paper, we
propose to combine the state-of-art deep convolutional
neural network (CNN) based object detection and graph
matching (GM) based object association within the same
framework. Each camera is used as a smart sensor and
processor to identify and track pedestrians. The post-
processed data (e.g., trajectory, object descriptors, etc.)
after compression are up-streamed to an edge server for
data synthesis and final cross-view object association.

During the graph derivation, we fully exploit the object-
level features and spatial/temporal features as node and
edge attributes in the graph. The experimental results
demonstrate that the proposed framework can outperform
recent work in terms of tracking accuracy and precision.

The rest of this paper is structured as follows. Section
2 provides a brief background review of graph matching
algorithm, a key component of our system. Section 3
details our system design, including pedestrian detection,
single-view pedestrian tracking and cross-view pedestrian
association. Section 4 presents the experimental results.
This paper concludes in Section 5 with tentative future
work summarized.

2. Background Review of Graph Matching
In this work, the state-of-art factorized graph matching

(FGM) [20] algorithm is used for both the single-view
pedestrian tracking and the cross-view object association,
as detailed in Section 3.

Similar to conventional graph matching (GM), given
two graph structures and the associated affinity matrices,
the problem of FGM also aims at deciding the optimal
correspondence X between nodes, to ultimately maximize
the global sum of the node and edge compatibilities, as
shown in (1), where ܲܭ൫݊௜, ௝݊൯	 denotes the similarity
between node ݅	from graph ܣ	and node ݆	from graph ܤ ,
,ሺ݁௜௞ܳܭ ௝݁௟ሻ measures the similarity between edge ݁௜௞
linking node ݅ and ݇ in graph ܣ	and edge ௝݁௟ linking node
݆ and ݈ in graph ܤ.

JሺXሻൌ∑ ,൫݊௜ܲܭ௜,௝ݔ ௝݊൯௜,௝ ൅ ∑ ௜௝௘೔ೖ∈ாభ,௘ೕ೗∈ாమݔ ,ሺ݁௜௞ܳܭ௞௟ݔ ௝݁௟ሻ (1)

In FGM, the pair-wise affinity matrix K is factorized,
to provide light-weight and unified representation of
conventional GM methods, as shown in (2), where ܲܭ
and ܳܭ are node and edge affinity matrices, ܩଵ and ܪଵ
represent the incidence matrices of graph ܣ and ܩଶ and
 ,Namely .ܤ ଶ represent the incidence matrices of graphܪ
the non-zero elements in each column of ܩଵ/ܩଶ and
ଶܪ/ଵܪ indicate the starting and ending nodes in the
corresponding directed edges, respectively.

K	ൌ݀݅ܽ݃൫ܿ݁ݒሺܲܭሻ൯ ൅ ሺܩଶ ൈ ଶܪሻ൯ሺܳܭሺܿ݁ݒଵሻ݀݅ܽ݃൫ܩ ൈ ଵሻ் (2)ܪ

FGM has the following advantages, compared with
previous GM algorithms:

Firstly, FGM operates over smaller matrices. Therefore,
the computational cost is significantly reduced.

Secondly, FGM internally introduces a path-following
algorithm and convex relaxation to better approximate the
GM problem solution.

Experimental results have demonstrated that FGM
outperforms the previous GM frameworks with proven
performance margin and is therefore chosen as the object
association tool for our pedestrian association task.

3. System Overview
Our proposed multiview tracking framework consisits

of three key components: Pedestrian Detection (in Section
3.A), Single-view Tracking (in Section 3.B) and Cross-
view Tracking (in Section 3.C).

A. Pedestrian Detection
Our pedestrian detection is based on RCNN detector

[7] as introduced in Section 1. Among 20 pre-defined
training categories, we only enable the “person” category
(with a confidence threshold=80%) and use this classifier
to detect pedestrian objects and corresponding bounding
boxes. The RCNN detector is very robust to illumination
change and the output at the fully-connected layer can be
used as feature vectors (totally 4096 entries) for the
following pedestrian tracking and cross-view object
association tasks.

Figure 1. Single-View Pedestrian Tracking Algorithm

Red Arrow: VOB match found and object unified. Green Arrow: New
VOB entry to create. Pedestrian faces are masked to protect privacy.

B. Single-View Object Tracking
Our single-view pedestrian tracking framework is

illustrated in Figure 1. In this framework, a virtual object
buffer (VOB), namely a dynamic pedestrian lookup table,
is used to document the historical information of each
detected object, such as CNN features, bounding box,
detected frame indices, motion vector, object label, last
detected frame index, occurrence (i.e., number of total
detections), etc. Each new pedestrian object from the
incoming frame will be compared against each VOB
candidate using the RCNN features and be associated
with the one which satisfies the following two criteria:

Criterion 1: The bounding box intersection-over-union
(IOU) ratio between the incoming pedestrian object and
the motion-compensated VOB object is greater than a pre-
defined threshold (i.e., 0.3). Please note that the motion-
compensated object is the previous detected VOB object

translated by (݉ݒ ∙ ∆݂), where ݉ݒ is the most recent

VOB object motion vector and ∆݂ is the time distance
between the current frame and the most recent frame the
target VOB candidate appeared.

Criterion 2: The RCNN feature Euclidean distance
between the current object and the VOB candidate is
minimal among all VOB candidates and at the same time
this VOB object has not been associated with any other
incoming frame object previously.

If a match is found, then the incoming frame object is
associated with the corresponding VOB object and this
object entry is updated (e.g. occurrence, motion vector,
trajectory, etc.). Otherwise, the incoming object is defined
as a new object and a new entry will be created and
inserted into the VOB.

This framework can tackle the infrequent RCNN
detection failure (i.e., object is missing temporarily and
later re-appears within a small number of frames, e.g.,
1~2 frames), as shown in Figure 2 (top).

Figure 2. Single-View Tracking Mis-detection Handling strategies

Top: RCNN mis-detection (1~2 frames) solved by VOB lookup. Mid:
Short-term mis-detection (<10 frames) solved by single-view graph
matching between last detected object frame and first re-detected object
frame. Bottom: Long-term mis-detection (>10 frames) handling using
new label assignment.

On the other hand, the mis-detections caused by
trajectory intersection or occlusion can be either short-
term or long-term. If the occlusion lasts only a few frames
(e.g., within 5 frames), after reappearance, the object still
resembles the corresponding one from the last detected
frame and the relationships to other objects remain.
However, if the occlusion or intersection lasts longer (e.g.,
above 20 frames), we cannot confidently predict its
location. In this work, we provide two different strategies
to address the long-term and the short-term intersection
and occlusion.

For the long-term “tracklets”, whose frame-stamps are
non-overlapping and the frame difference between the last
detection and first re-detection is above 10 frames, we
simply assign a new object label, as shown in Figure 2

(bottom). Later, we will refine the labels through cross-
view tracking, as described in Section 3.C.

Over the short-term “tracklets”, whose frame-stamps
are non-overlapping and the frame distance between the
last detection and the first re-detection is within 10
frames, we apply the FGM [20] algorithm (introduced in
Section 2) to associate, as shown in Figure 2 (middle). In
our single-view object association across frames, each
detected pedestrian object is defined as a node in the
graph, as illustrated in Figure 3. The relationship between
two objects in the frame is defined as an edge in the
graph. For object tracklets with non-overlapping frame-
stamps (e.g., one tracklet ending in frame 11 and the other
tracklet starting in frame 17), we trigger the graph
matching over the two most adjacent frames (i.e., frame
11 and frame 17). For the associated objects, we further
compare the spatial offset (i.e., displacement between
associated objects bounding box centers) of the two
associated objects against a threshold, i.e., s_factor ∙ ݒ݉ ∙
∆݂, where ݉ݒ is the motion vector of the ending frame
object in the anchor object trajectory and ∆݂ is the frame
distance between the ending frame-stamp in the anchor
tracklet and the starting frame-stamp of the other tracklet.
s_factor is a scaling controller. A larger s_factor makes it
more likely to link “broken” tracklets but simultaneously
increases the risk of false-linking. In our configuration,
s_factor=5. If two objects satisfy the spatial validation,
we will link the corresponding tracklets and unify their
labels. Otherwise, the two objects are assigned with
different labels.

Figure 3. Single-View Graph Matching between frames

Solid black lines indicate the edge simlarity in a frame; Green lines
indicate the associated objects through graph matching.

Under our configuration, the RCNN features are used
as node attributes and the spatial relationships are used as
edge attributes. The node similarity is defined in (3),
where ܰܰܥሬሬሬሬሬሬሬሬሬԦ௧

௜ and ܰܰܥሬሬሬሬሬሬሬሬሬԦ
௧ା∆௧
௝ denote the RCNN feature

vector for node ݅ and node ݆ at time ݐ and ݐ ൅ ݐ∆ . The
edge similarity is defined in (4), where ݀ప௞ሬሬሬሬሬԦሺݐሻ ൌ పܺሬሬሬԦሺݐሻ െ
ܺ௞ሬሬሬሬԦሺݐሻ	is the displacement vector between node ݅	position

and node ݇ position, at timestamp ݐ	and ݀ప௟ሬሬሬሬԦሺݐ ൅ ሻ is theݐ∆
displacement vector between node ݆ position and node ݈
position at timestamp	ݐ ൅ ”ݐݏ݅݀“ ,In both (3) and (4) .ݐ∆
denotes the L-2 distance between two vectors.

,൫݊௜ܲܭ ௝݊൯ ൌ ሬሬሬሬሬሬሬሬሬԦ௧ܰܰܥ൫ݐݏሺെ݀݅݌ݔ݁
௜, ሬሬሬሬሬሬሬሬሬԦܰܰܥ

௧ା∆௧
௝ ൯ሻ (3)

,൫݁௜௞ܳܭ ௝݁௟൯ ൌ ݐݏሺെ݀݅݌ݔ݁ ቀ݀ప௞ሬሬሬሬሬԦሺݐሻ, ఫ݀௟
ሬሬሬሬԦሺݐ ൅ (4)								ሻቁሻݐ∆

C. Cross-View Object Tracking

The cross-view object tracking consists of three major
steps: homography projection, graph matching, and label
unification.

Step 1: Homography Projection. The goal of this step is
to project objects standing on the same ground plane from
different views onto a reference common plane to impose
spatial constraints. In our implementation, we select the
view with the largest visible area as the reference view
and derive the homography matrix based on the pre-
selected corresponding feature points on the ground
between the reference and non-reference views. Without
precise calibration parameters, the estimated homography
parameters already provide relatively accurate projections
for ground points (e.g., the points close to the feet are
projected accurately after homography projection), as
illustrated in Figure 4, where the original ground positions
are transformed according to the derived homography
matrix before further applying graph matching.

Figure 4. Cross-View Homography Mapping and GM Illustration

Top: two frames captured at the same time but from different cameras.
The left view is used as reference view. Bottom left and right: original
spatial locations in left and right views. Bottom middle: homography
projected spatial locations from top right view to top left view. Dashed
lines denote spatial homography transformation. Bi-directional headed
arrow denote associated objects through cross-view graph matching.

Step 2: Cross-view Graph matching (CV-GM) between
non-reference view and reference view. Similar to single-
view object association between frames, we also apply the
graph matching algorithm [20] to associate objects across
views, using object-level features and inter-object
relationships, as illustrated in Figure 4. For each view,
each node represents a tracklet. The node attributes are
RCNN features from the frames that the object is detected
and the object trajectories. The node similarity between
object ݅ in one view and object 	݆	 in another view is

Graph
Matching

Frame 10 Frame 15

Homography
Projection

,൫݊௜ܲܭ ௝݊൯ ൌ ܰܥሺܲܭ ௜ܰ௝ሻ ∙ ൫ܲܭ ௜ܵ௝൯ , where ܲܭሺܰܥ ௜ܰ௝ሻ
denotes the tracklet CNN feature similarity and ܲܭሺ ௜ܵ௝ሻ
represents the object trajectory similarity, as defined in (5)
and (6). Here ௜ܱ and ௝ܱ represent the set of detection
frame-stamps for object ݅ and ݆ . In (6), ൫ݔ௧

௜, ௧ݕ
௜൯ denotes

the 2D coordinates of the bounding box lower boundary
middle point at time ݐ for object	݅. ௧ܰ 	is the co-detected
object number. The ܶሺ. ሻ represents the homography
transform from object ݆ view to object ݅ view. In both (5)
and (6), distance is measured using Euclidean norm.

ܰܥ൫ܲܭ		 ௜ܰ௝൯ ൌ ሺെ݌ݔ݁	
ଵ

ே೟
∑ ሬሬሬሬሬሬሬሬሬԦ௧ܰܰܥሺݐݏ݅݀

௜, ሬሬሬሬሬሬሬሬሬԦܰܰܥ
௧
௝ሻሻ௧∈ሺை೔∩ைೕሻ (5)

൫ܲܭ ௜ܵ௝൯ ൌ ሺെ݌ݔ݁	
ଵ

ே೟
∑ ௧ݔሺݐݏ݅݀

௜, ܶሺݔ௧
௝ሻሻ௧∈ሺை೔∩ைೕሻ (6)

The edge similarity, ܳܭ൫݁ప௞ሬሬሬሬሬԦ, ఫ݁௟ሬሬሬሬԦ൯, is used to measure
the object location and trajectory similarity between node
݅ and node ݇ in view 1 and that between node ݆ and node ݈
in view 2, as defined in (7), where ݂ܿ݀ is the co-detected
frame set between two views, ݐ is the frame index, ݀ప௞ሬሬሬሬሬԦሺݐሻ
and ఫ݀௟

ሬሬሬሬԦሺݐሻ are defined similarly as (4) but extended to 3-
dimensional vector by concatenating all temporally-
detected samples.

,൫݁ప௞ሬሬሬሬሬԦܳܭ ఫ݁௟ሬሬሬሬԦ൯ ൌ ሺെ݌ݔ݁
ଵ

ே೟
∑ ,ሻݐሺ݀ప௞ሬሬሬሬሬԦሺݐݏ݅݀ ఫ݀௟

ሬሬሬሬԦሺݐሻሻሻ௧∈௖ௗ௙ (7)

For simplicity, the graph matching is triggered when a
new object appears in one view (either entering the scene
or being re-detected). After association, we re-calculate
the matching distance ܦ௧	(i.e., sum of the node and edge
distance against the associated nodes and edges in other
views) for the new object and compare with the minimum
distance (ܦ௠௜௡) from the previously-associated objects.
If ௧ܦ	 ൑ ߩ ∙ ௠௜௡ܦ , we assume the association is correct.
Otherwise, we assume that the association is incorrect and
assign a different label. Here ߩ is a confidence parameter.
A larger ߩ will associate objects more easily but increases
the risk of cross-view mismatch. In our setting, 10 = ߩ.

Figure 5. Cross-View Graph Matching Illustration

Top: Tracklet 1 captured from View 1; Mid: Two tracklets (2 and 3)
captured from View 2. Bottom: After cross-view graph matching, tracket
2 and 3 are both matched with tracklet 1 for the overlapping frames and
therefore the labels of tracklet 1, 2 and 3 are unified (eventually all
marked in green).

Step 3: Label Unification. According to the cross-view
graph matching results, we unify the labels, as illustrated
in Figure 5. The object with shorter tracklet in one view
will carry over the label from the associated object with

longer tracklet in the other views, as long as it does not
overlap with any previously-associated tracklet(s) in the
same view. Automatically, the falsely-labeled tracklets in
the single-view tracking are recognized and re-labeled.

4. Experimental Results
We evaluate our proposed tracking framework on the

public PETS benchmark dataset [21]. The scenes in this
cross-view dataset are very challenging with multiple
pedestrians constantly interacting with each other and
different kinds of occlusions. We simulate the multi-view
tracking among View 1, 5 and 7 for 200 frames, using
View 1 as the reference view. Objects from View 5 and
View 7 are projected onto View 1 and associated and then
the labels are unified across views.

We report our tracking results using the MOT metrics
[22], i.e., multiple object tracking precision (MOTP) and
multiple object tracking accuracy (MOTA), summarized
in Table I. Previous works using the same dataset ([18],
[23]) are provided for comparison.

TABLE I CROSS-VIEW TRACKING RESULTS OVER PETS DATASET
Method [23]

 (3-view)
[23]

(2-view)
[18]

(2-view)
Proposed
(3-view)

MOTP 53.4% 60.0 79.9% 83.6%
MOTA 74.1% 76.0 93.2% 94.8%

The experimental results demonstrate that the RCNN
detector can mostly detect the pedestrian objects but may
occasionally fail on partially-occluded or small objects.
The RCNN features do not suffice to associate objects
across views. However, after combining the spatial and
temporal constraints (e.g., locations, trajectories, etc.), the
cross-view object association is significantly improved.
Compared with [18] and [23], the MOTP and MOTA are
both improved. A sample output from our tracking system
is provided in Figure 6.

5. CONCLUSIONS
In this paper, we propose a novel multi-view pedestrian

detection and tracking framework based on smart camera
network for surveillance applications. We use the RCNN
detector to identify pedestrians in each view and track the
detected objects by matching the CNN features. Then we
formulate and solve the cross-view object association as a
graph matching problem using the object trajectories. The
experimental results demonstrate the improvement over
previous works. Future studies include (1) the training of
a CNN classifier specifically for pedestrian detection and
(2) incorporation with additional visual features for more
accurate cross-view object association.

Tracklet 3

Tracklet 1

Tracklet 2

Detected object tracklets with color indicating object label.

Non-detected objects

Figure 6. Proposed Multiview Pedestrian Tracking System Output Visualization

6. References

[1] C. Papageorgiou and T. Poggio, "A Trainable Pedestrian
Detection system", International Journal of Computer
Vision (IJCV), pp: 15-33,2000.

[2] N. Dalal, B. Triggs, “Histograms of oriented gradients for
human detection”, IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pp:886-
893, 2005.

[3] B. Samarth. "Practical OpenCV", Berkeley, California:
Apress, 2013.

[4] C. Cortes, V. Vapnik, "Support-vector Networks". Machine
Learning. 20 (3): 273–297, 1995.

[5] K. Mikolajczyk, C. Schmid, and A. Zisserman, "Human
detection based on a probabilistic assembly of robust part
detectors", The European Conference on Computer Vision
(ECCV), volume 3021/2004, pages 69-82, 2005.

[6] Y. Xu, L. Xu, D. Li, and Y. Wu, “Pedestrian detection
using background subtraction assisted Support Vector
Machine”, International Conference on Intelligent Systems
Design and Applications (ISDA), 2011.

[7] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun,
"Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks", Advances in Neural
Information Processing Systems (NIPS), 2015.

[8] J. Tu, H. Tao, T. Huang, “Online Updating Appearance
Generative Mixture Model for Meanshift Tracking”, in
Machine Vision and Applications, Vol: 20, Issue: 3, pp:
163-173, 2009.

[9] Z. Han, Q. Ye, J. Jiao, "Online Feature Evaluation for
Object Tracking using Kalman Filter",in International
Conference on Pattern Recognition (ICPR), 2008.

[10] A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft, “Simple
Online and Realtime Tracking”, Proc. IEEE International
Conference on Image Processing (ICIP), pp. 3464 - 3468,
Arizona, USA, September, 2016.

[11] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M.
Shah,"Part-based Multiple-person Tracking with Partial
Occlusion Handling", International Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[12] P. Jahanshahi, A. Masoud, “Multi-view tracking using
Kalman filter and graph cut”, in AI & Robotics
(IRANOPEN), pp. 1-5, 2015.

[13] X. Wang ,"Intelligent multi-camera video surveillance: A
review”, Journal of Pattern Recognition Letter, Vol. 34, pp.
3–19, 2013.

[14] Kang, J., Cohen, I., Medioni, G., “Persistent objects
tracking across multiple non overlapping cameras”, In:

Proceedings of IEEE Workshop on Motion and Video
Computing, pp. 112–119, 2005.

[15] F. Fleuret, J. Berclaz, R. Lengagne and P. Fua,
“Multicamera People Tracking with a Probabilistic
Occupancy Map”, in IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), vol. 30, no. 2,
pp. 267-282, Feb. 2008.

[16] J. Berclaz, F. Fleuret, E. Turetken and P. Fua, “Multiple
Object Tracking Using K-Shortest Paths Optimization”, in
IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 33, no. 9, pp. 1806-1819, 2011.

[17] L. Leal-Taixe,G. Pons-Moll, B. Rosenhahn, "Branch-and-
price global optimization for multiview multi-target
tracking", IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

[18] C. Li, S. Ping, H. Sheng, J. Chen, and Z. Xiong, "Multi-
view Multi-object Tracking Based on Global Graph
Matching Structure." Pacific Rim Conference on
Multimedia, 2016.

[19] Nie W, Liu A, Su Y, Luan H, Yang Z, Cao L, Ji R.
Single/cross-camera multiple-person tracking by graph
matching. Neurocomputing, 2014.

[20] F. Zhou and F. De la Torre, “Deformable Graph
Matching”, IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 38(9):1774-1789, 2016.

[21] J. Ferryman,, A. Shahrokni, “PETS-2009: dataset and
challenge”, 20th IEEE International Workshop on
Performance Evaluation of Tracking and Surveillance, pp.
1–6, 2009.

[22] K. Bernardin, and S. Rainer, "Evaluating multiple object
tracking performance: the CLEAR MOT metrics.",
EURASIP Journal on Image and Video Processing, Issue:
1, pp: 1-10, 2008.

[23] Z. Wu, N.I. Hristov, T.H. Kunz, M. Betke, “Tracking-
reconstruction or reconstruction tracking Comparison of
two multiple hypothesis tracking approaches to interpret
3D object motion from several camera views”, Workshop
on Motion and Video Computing (WMVC), pp. 1–8, 2009.

